References
1.
H.
Adesnik, L. Abdeladim, Probing neural codes
with two-photon holographic optogenetics. Nature
Neuroscience. 24, 1356–1366 (2021).
2.
T.
Akam, D. M. Kullmann, Oscillatory multiplexing of
population codes for selective communication in the mammalian brain.
Nature Reviews Neuroscience. 15, 111–122
(2014).
3.
A.
Alegria, A. Joshi, J. O’Brien, S. B. Kodandaramaiah, Single neuron recording:
Progress towards high-throughput analysis. Bioelectronics in
Medicine. 3, 33–36 (2020).
4.
J.
Antolik, Q. Sabatier, C. Galle, Y. Frégnac, R. Benosman, Assessment of
optogenetically-driven strategies for prosthetic restoration of cortical
vision in large-scale neural simulation of V1.
Scientific Reports. 11, 1–18 (2021).
5.
G.
K. Anumanchipalli, J. Chartier, E. F. Chang, Speech synthesis from
neural decoding of spoken sentences. Nature.
568, 493–498 (2019).
6.
J.
Aru, J. Aru, V. Priesemann, M. Wibral, L. Lana, G. Pipa, W. Singer, R.
Vicente, Untangling
cross-frequency coupling in neuroscience. Current Opinion in
Neurobiology. 31, 51–61 (2015).
7.
A.
Aussel, L. Buhry, L. Tyvaert, R. Ranta, A detailed anatomical
and mathematical model of the hippocampal formation for the generation
of sharp-wave ripples and theta-nested gamma oscillations.
Journal of Computational Neuroscience. 45,
207–221 (2018).
8.
A.
Aussel, R. Ranta, O. Aron, S. Colnat-Coulbois, L. Maillard, L. Buhry,
Cell to network computational model of the epileptic human hippocampus
suggests specific roles of network and channel dysfunctions in the ictal
and interictal oscillations. Journal of Computational
Neuroscience (2022), doi:10.1007/s10827-022-00829-5.
9.
L.
Avitan, C. Stringer, Not so spontaneous: Multi-dimensional representations of behaviors and
context in sensory areas. Neuron (2022), doi:10.1016/j.neuron.2022.06.019.
10.
D.
L. Barack, J. W. Krakauer, Two views on the
cognitive brain. Nature Reviews Neuroscience.
22, 359–371 (2021).
11.
G.
Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein, W.
Maass, A solution to the learning dilemma for recurrent networks of
spiking neurons. Nature Communications. 11
(2020), doi:10.1101/738385.
12.
A.
Bemporad, M. Morari, V. Dua, E. N. Pistikopoulos, The explicit linear
quadratic regulator for constrained systems. Automatica.
38, 3–20 (2002).
13.
G.
J. Berman, D. M. Choi, W. Bialek, J. W. Shaevitz, Mapping the stereotyped
behaviour of freely moving fruit flies. Journal of The Royal
Society Interface. 11, 20140672 (2014).
14.
A.
Bogdanchikov, M. Zhaparov, R. Suliyev, "Python to learn
programming" in Journal of Physics:
Conference Series (IOP Publishing, 2013),
vol. 423, p. 012027.
15.
M.
F. Bolus, A. A. Willats, C. J. Whitmire, C. J. Rozell, G. B. Stanley, Design strategies for
dynamic closed-loop optogenetic neurocontrol in vivo. Journal of
Neural Engineering. 15, 026011 (2018).
16.
M.
F. Bolus, A. A. Willats, C. J. Rozell, G. B. Stanley, State-space optimal
feedback control of optogenetically driven neural activity.
Journal of neural engineering. 18, 036006
(2021).
17.
N.
Brunel, X.-J. Wang, What determines the frequency of fast network
oscillations with irregular neural discharges? I.
Synaptic dynamics and excitation-inhibition balance.
Journal of neurophysiology. 90, 415–430
(2003).
18.
E.
A. Buffalo, P. Fries, R. Landman, T. J. Buschman, R. Desimone, Laminar differences in
gamma and alpha coherence in the ventral stream. Proceedings of
the National Academy of Sciences of the United States of America.
108, 11262–11267 (2011).
19.
T.
J. Buschman, E. L. Denovellis, C. Diogo, D. Bullock, E. K. Miller, Synchronous
Oscillatory Neural Ensembles for Rules in the
Prefrontal Cortex. Neuron.
76, 838–846 (2012).
20.
G.
Buzsáki, A. Draguhn, Neuronal oscillations in
cortical networks. Science. 304, 1926–1929
(2004).
21.
G.
Buzsáki, C. A. Anastassiou, C. Koch, The origin of extracellular
fields and currents EEG, ECoG,
LFP and spikes. Nature Reviews Neuroscience 2012
13:6. 13, 407–420 (2012).
22.
G.
Buzsáki, X.-J. Wang, Mechanisms of
Gamma Oscillations. Annual Review of
Neuroscience. 35, 203–225 (2012).
23.
G.
Buzsáki, Hippocampal sharp
wave-ripple: A cognitive biomarker for episodic memory and
planning. Hippocampus. 25, 1073–1188
(2015).
24.
J.
A. Cardin, M. Carlén, K. Meletis, U. Knoblich, F. Zhang, K. Deisseroth,
L. H. Tsai, C. I. Moore, Targeted optogenetic
stimulation and recording of neurons in vivo using cell-type-specific
expression of Channelrhodopsin-2. Nature
Protocols. 5, 247–254 (2010).
25.
S.
Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang,
Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B.
Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, T. J.
McHugh, Near-infrared
deep brain stimulation via upconversion nanoparticlemediated
optogenetics. Science. 359, 679–684
(2018).
26.
I.-W. Chen, E. Papagiakoumou, V. Emiliani, Towards circuit
optogenetics. Current Opinion in Neurobiology.
50, 179–189 (2018).
27.
M.
M. Churchland, J. P. Cunningham, M. T. Kaufman, S. I. Ryu, K. V. Shenoy,
Cortical
Preparatory Activity: Representation
of Movement or First Cog in a Dynamical
Machine? Neuron. 68, 387–400
(2010).
28.
M.
M. Churchland, J. P. Cunningham, M. T. Kaufman, J. D. Foster, P.
Nuyujukian, S. I. Ryu, K. V. Shenoy, K. V. Shenoy, Neural population dynamics
during reaching. Nature. 487, 51–56
(2012).
29.
S.
R. Cole, B. Voytek, Brain
Oscillations and the Importance of
Waveform Shape. Trends in Cognitive Sciences.
21, 137–149 (2017).
30.
S.
Cole, B. Voytek, Cycle-by-cycle analysis of
neural oscillations. Journal of Neurophysiology.
122, 849–861 (2019).
31.
B.
R. Cowley, A. C. Snyder, K. Acar, R. C. Williamson, B. M. Yu, M. A.
Smith, Slow
Drift of Neural Activity as a
Signature of Impulsivity in Macaque
Visual and Prefrontal Cortex. Neuron.
108, 551–567.e8 (2020).
32.
J.
P. Cunningham, B. M. Yu, Dimensionality reduction for
large-scale neural recordings. Nature neuroscience.
17, 1500–9 (2014).
33.
J.
T. Davie, M. H. P. Kole, J. J. Letzkus, E. A. Rancz, N. Spruston, G. J.
Stuart, M. Häusser, Dendritic patch-clamp
recording. Nature Protocols. 1, 1235–1247
(2006).
34.
Z.
W. Davis, L. Muller, J. Martinez-Trujillo, T. Sejnowski, J. H. Reynolds,
Spontaneous
travelling cortical waves gate perception in behaving primates.
Nature. 587, 432–436 (2020).
35.
A.
P. Davison, M. L. Hines, E. Muller, Trends in programming
languages for neuroscience simulations. Frontiers in
Neuroscience. 3, 374–380 (2009).
36.
L.
Driscoll, K. Shenoy, D. Sussillo, Flexible multitask
computation in recurrent networks utilizes shared dynamical motifs
(2022), p. 2022.08.15.503870.
37.
S.
Dufour, Y. D. Koninck, Optrodes for combined
optogenetics and electrophysiology in live animals.
Neurophotonics. 2, 031205 (2015).
38.
L.
Duncker, M. Sahani, Dynamics on the
manifold: Identifying computational dynamical activity from
neural population recordings. Current Opinion in
Neurobiology. 70, 163–170 (2021).
39.
S.
Dutta, E. Ackermann, C. Kemere, Analysis of an open
source, closed-loop, realtime system for hippocampal sharp-wave ripple
disruption. Journal of Neural Engineering.
16, 016009 (2019).
40.
V.
Emiliani, A. E. Cohen, K. Deisseroth, M. Häusser, All-optical
interrogation of neural circuits. Journal of Neuroscience.
35, 13917–13926 (2015).
41.
D.
Engel, Subcellular patch-clamp
recordings from the somatodendritic domain of nigral dopamine
neurons. Journal of Visualized Experiments.
2016, e54601 (2016).
42.
D.
Eriksson, A. Schneider, A. Thirumalai, M. Alyahyay, B. de la Crompe, K.
Sharma, P. Ruther, I. Diester, Multichannel
optogenetics combined with laminar recordings for ultra-controlled
neuronal interrogation. Nature Communications.
13, 985 (2022).
43.
B.
D. Evans, S. Jarvis, S. R. Schultz, K. Nikolic, PyRhO:
A Multiscale Optogenetics Simulation Platform.
Frontiers in Neuroinformatics. 10, 8
(2016).
44.
M.
S. Fabus, A. J. Quinn, C. E. Warnaby, M. W. Woolrich, Automatic decomposition of
electrophysiological data into distinct nonsinusoidal oscillatory
modes. Journal of Neurophysiology. 126,
1670–1684 (2021).
45.
G.
Faini, C. Molinier, C. Telliez, C. Tourain, B. C. Forget, E. Ronzitti,
V. Emiliani, Ultrafast Light
Targeting for High-Throughput Precise Control of
Neuronal Networks. bioRxiv, 2021.06.14.448315
(2021).
46.
L.
Fenno, O. Yizhar, K. Deisseroth, The
development and application of optogenetics. Annual Review of
Neuroscience. 34, 389–412 (2011).
47.
L.
M. J. Fernandez, A. Lüthi, Sleep
Spindles: Mechanisms and
Functions. Physiological Reviews.
100, 805–868 (2020).
48.
N.
C. Flytzanis, C. N. Bedbrook, H. Chiu, M. K. M. Engqvist, C. Xiao, K. Y.
Chan, P. W. Sternberg, F. H. Arnold, V. Gradinaru, Archaerhodopsin variants with
enhanced voltage-sensitive fluorescence in mammalian and
Caenorhabditis elegans neurons. Nature
Communications. 5, 4894 (2014).
49.
T.
J. Foutz, R. L. Arlow, C. C. Mcintyre, Theoretical
principles underlying optical stimulation of a channelrhodopsin-2
positive pyramidal neuron. J Neurophysiol.
107, 3235–3245 (2012).
50.
J.
A. Gallego, M. G. Perich, L. E. Miller, S. A. Solla, Neural
Manifolds for the Control of
Movement. Neuron. 94, 978–984
(2017).
51.
W.
Gerstner, W. M. Kistler, R. Naud, L. Paninski, Neuronal dynamics:
From single neurons to networks and models of
cognition (Cambridge University Press,
2014).
52.
W.
Göbel, F. Helmchen, In Vivo Calcium
Imaging of Neural Network Function.
Physiology. 22, 358–365 (2007).
53.
L.
Grosenick, J. H. Marshel, K. Deisseroth, Review
Closed-Loop and Activity-Guided Optogenetic
Control. Neuron. 86, 106–139
(2015).
54.
P.
Gutruf, J. A. Rogers, Implantable, wireless
device platforms for neuroscience research. Current Opinion in
Neurobiology. 50, 42–49 (2018).
55.
E.
Hagen, S. Næss, T. V. Ness, G. T. Einevoll, Multimodal modeling of
neural network activity: Computing LFP, ECoG,
EEG, and MEG signals with LFPy
2.0. Frontiers in Neuroinformatics. 12, 92
(2018).
56.
D.
R. Hochbaum, Y. Zhao, S. L. Farhi, N. Klapoetke, C. A. Werley, V.
Kapoor, P. Zou, J. M. Kralj, D. MacLaurin, N. Smedemark-Margulies, J. L.
Saulnier, G. L. Boulting, C. Straub, Y. K. Cho, M. Melkonian, G. K. S.
Wong, D. J. Harrison, V. N. Murthy, B. L. Sabatini, E. S. Boyden, R. E.
Campbell, A. E. Cohen, All-optical electrophysiology
in mammalian neurons using engineered microbial rhodopsins.
Nature Methods. 11, 825–833 (2014).
57.
A.
L. Hodgkin, A. F. Huxley, B. Katz, Measurement
of current-voltage relations in the membrane of the giant axon of
Loligo. The Journal of Physiology.
116, 424–448 (1952).
58.
G.
R. Holt, C. Koch, Electrical interactions
via the extracellular potential near cell bodies. Journal of
Computational Neuroscience. 6, 169–184
(1999).
59.
C.
Hurwitz, A. Srivastava, K. Xu, J. Jude, M. G. Perich, L. E. Miller, M.
H. Hennig, "Targeted Neural Dynamical Modeling" in
Advances in Neural Information Processing Systems
(2021; https://arxiv.org/abs/2110.14853),
vol. 35, pp. 29379–29392.
60.
M.
Inoue, Genetically encoded
calcium indicators to probe complex brain circuit dynamics in vivo.
Neuroscience Research. 169, 2–8 (2021).
61.
M.
Jazayeri, S. Ostojic, Interpreting neural
computations by examining intrinsic and embedding dimensionality of
neural activity. Current Opinion in Neurobiology.
70, 113–120 (2021).
62.
S.
Jeon, Y. Lee, D. Ryu, Y. K. Cho, Y. Lee, S. B. Jun, C.-H. Ji, Implantable Optrode
Array for Optogenetic Modulation and
Electrical Neural Recording. Micromachines.
12, 725 (2021).
63.
A.
Joglekar, A. Prjibelski, A. Mahfouz, P. Collier, S. Lin, A. K.
Schlusche, J. Marrocco, S. R. Williams, B. Haase, A. Hayes, J. G. Chew,
N. I. Weisenfeld, M. Y. Wong, A. N. Stein, S. A. Hardwick, T. Hunt, Q.
Wang, C. Dieterich, Z. Bent, O. Fedrigo, S. A. Sloan, D. Risso, E. D.
Jarvis, P. Flicek, W. Luo, G. S. Pitt, A. Frankish, A. B. Smit, M. E.
Ross, H. U. Tilgner, A spatially resolved
brain region- and cell type-specific isoform atlas of the postnatal
mouse brain. Nature Communications. 12,
463 (2021).
64.
K.
Johnsen, Kjohnsen/tklfp: V0.2.0 (2022), doi:10.5281/zenodo.6787979.
65.
A.
L. Juavinett, G. Bekheet, A. K. Churchland, Chronically implanted
Neuropixels probes enable high-yield recordings in freely
moving mice. eLife. 8, e47188
(2019).
66.
J.
F. Kalaska, R. Caminiti, A. P. Georgopoulos, Cortical mechanisms related to
the direction of two-dimensional arm movements: Relations in parietal
area 5 and comparison with motor cortex. Experimental Brain
Research. 51, 247–260 (1983).
67.
R.
E. Kalman, A new approach to
linear filtering and prediction problems. Journal of Fluids
Engineering, Transactions of the ASME. 82, 35–45
(1960).
68.
G.
Karvat, A. Schneider, M. Alyahyay, F. Steenbergen, M. Tangermann, I.
Diester, Real-time
detection of neural oscillation bursts allows behaviourally relevant
neurofeedback. Communications Biology. 3,
1–10 (2020).
69.
C.
Kathe, F. Michoud, P. Schönle, A. Rowald, N. Brun, J. Ravier, I.
Furfaro, V. Paggi, K. Kim, S. Soloukey, L. Asboth, T. H. Hutson, I.
Jelescu, A. Philippides, N. Alwahab, J. Gandar, D. Huber, C. I. De
Zeeuw, Q. Barraud, Q. Huang, S. P. Lacour, G. Courtine, Wireless closed-loop
optogenetics across the entire dorsoventral spinal cord in mice.
Nature Biotechnology. 40, 198–208
(2022).
70.
M.
T. Kaufman, M. M. Churchland, S. I. Ryu, K. V. Shenoy, Cortical activity in the null
space: Permitting preparation without movement.
Nature Neuroscience. 17, 440–448 (2014).
71.
A.
Kazemipour, O. Novak, D. Flickinger, J. S. Marvin, A. S. Abdelfattah, J.
King, P. M. Borden, J. J. Kim, S. H. Al-Abdullatif, P. E. Deal, E. W.
Miller, E. R. Schreiter, S. Druckmann, K. Svoboda, L. L. Looger, K.
Podgorski, Kilohertz
frame-rate two-photon tomography. Nature Methods.
16, 778–786 (2019).
72.
T.
D. Kim, T. Z. Luo, J. W. Pillow, C. D. Brody, "Inferring Latent
Dynamics Underlying Neural Population Activity via Neural
Differential Equations" in Proceedings of the 38th
International Conference on Machine
Learning (PMLR, 2021), pp. 5551–5561.
73.
K.
E. Kishi, Y. S. Kim, M. Fukuda, M. Inoue, T. Kusakizako, P. Y. Wang, C.
Ramakrishnan, E. F. X. Byrne, E. Thadhani, J. M. Paggi, T. E. Matsui, K.
Yamashita, T. Nagata, M. Konno, S. Quirin, M. Lo, T. Benster, T. Uemura,
K. Liu, M. Shibata, N. Nomura, S. Iwata, O. Nureki, R. O. Dror, K.
Inoue, K. Deisseroth, H. E. Kato, Structural basis for
channel conduction in the pump-like channelrhodopsin
ChRmine. Cell. 185,
672–689.e23 (2022).
74.
T.
Knöpfel, C. Song, Optical voltage imaging
in neurons: Moving from technology development to practical tool.
Nature Reviews Neuroscience. 20, 719–727
(2019).
75.
M.
Kokaia, M. Andersson, M. Ledri, An optogenetic
approach in epilepsy. Neuropharmacology.
69, 89–95 (2013).
76.
E.
Krook-Magnuson, C. Armstrong, M. Oijala, I. Soltesz, On-demand optogenetic control
of spontaneous seizures in temporal lobe epilepsy. Nature
Communications. 4, 1–8 (2013).
77.
A.
Kumar, I. Vlachos, A. Aertsen, C. Boucsein, Challenges of
understanding brain function by selective modulation of neuronal
subpopulations. Trends in Neurosciences.
36, 579–586 (2013).
78.
K.
Y. Kwon, H.-M. Lee, M. Ghovanloo, A. Weber, W. Li, Design, fabrication,
and packaging of an integrated, wirelessly-powered optrode array for
optogenetics application. Frontiers in Systems Neuroscience.
9 (2015).
79.
C.
Lee, A. Lavoie, J. Liu, S. X. Chen, B. Liu, Light Up the
Brain: The Application of
Optogenetics in Cell-Type Specific Dissection
of Mouse Brain Circuits. Frontiers in Neural
Circuits. 14 (2020).
80.
J.
Y. Lin, P. M. Knutsen, A. Muller, D. Kleinfeld, R. Y. Tsien, ReaChR:
A red-shifted variant of channelrhodopsin enables deep
transcranial optogenetic excitation. Nature Neuroscience.
16, 1499–1508 (2013).
81.
M.
Lundqvist, J. Rose, P. Herman, S. L. L. Brincat, T. J. J. Buschman, E.
K. K. Miller, Gamma and Beta
Bursts Underlie Working Memory. Neuron.
90, 152–164 (2016).
82.
M.
Lundqvist, J. Rose, S. L. Brincat, M. R. Warden, T. J. Buschman, P.
Herman, E. K. Miller, Reduced variability of
bursting activity during working memory. Scientific
Reports. 12, 15050 (2022).
83.
L.
van der Maaten, G. Hinton, Visualizing Data using
t-SNE. Journal of Machine Learning Research.
9, 2579–2605 (2008).
84.
J.
H. Macke, L. Buesing, J. P. Cunningham, B. M. Yu, K. V. Shenoy, M.
Sahani, "Empirical models of spiking in neural populations" in
Advances in Neural Information Processing Systems
(Curran Associates, Inc., 2011), vol. 24.
85.
D.
Mao, N. Li, Z. Xiong, Y. Sun, G. Xu, Single-Cell
Optogenetic Control of Calcium Signaling with a
High-Density Micro-LED Array. iScience.
21, 403–412 (2019).
86.
D.
Mao, Z. Xiong, M. Donnelly, G. Xu, Brushing-Assisted
Two-Color Quantum-Dot Micro-LED Array Towards Bi-Directional
Optogenetics. IEEE Electron Device Letters.
42, 1504–1507 (2021).
87.
R.
I. Martinez-Garcia, B. Voelcker, J. B. Zaltsman, S. L. Patrick, T. R.
Stevens, B. W. Connors, S. J. Cruikshank, Two dynamically
distinct circuits drive inhibition in the sensory thalamus.
Nature. 583, 813–818 (2020).
88.
A.
Mathis, P. Mamidanna, K. M. Cury, T. Abe, V. N. Murthy, M. W. Mathis, M.
Bethge, DeepLabCut:
Markerless pose estimation of user-defined body parts with deep
learning. Nature Neuroscience. 21,
1281–1289 (2018).
89.
A.
Mazzoni, H. Lindén, H. Cuntz, A. Lansner, S. Panzeri, G. T. Einevoll, Computing the
Local Field Potential (LFP) from Integrate-and-Fire Network Models. PLOS
Computational Biology. 11, e1004584 (2015).
90.
N.
McAlinden, Y. Cheng, R. Scharf, E. Xie, E. Gu, C. F. Reiche, R. Sharma,
P. Tathireddy, P. Tathireddy, L. Rieth, S. Blair, K. Mathieson, Multisite microLED optrode array for neural interfacing.
Neurophotonics. 6, 035010 (2019).
91.
S.
Moldakarimov, M. Bazhenov, D. E. Feldman, T. J. Sejnowski, Structured networks
support sparse traveling waves in rodent somatosensory cortex.
Proceedings of the National Academy of Sciences of the United States
of America. 115, 5277–5282 (2018).
92.
A.
S. Morcos, C. D. Harvey, History-dependent variability in
population dynamics during evidence accumulation in cortex.
Nature Neuroscience. 19, 1672–1681
(2016).
93.
E.
A. Mukamel, J. Ngai, Perspectives on
defining cell types in the brain. Current Opinion in
Neurobiology. 56, 61–68 (2019).
94.
E.
Muller, J. A. Bednar, M. Diesmann, M. O. Gewaltig, M. Hines, A. P.
Davison, Python in
neuroscience. Frontiers in Neuroinformatics.
9, 11 (2015).
95.
L.
Muller, F. Chavane, J. Reynolds, T. J. Sejnowski, Cortical travelling waves:
Mechanisms and computational principles. Nature
Reviews Neuroscience. 19, 255–268 (2018).
96.
S.
R. Nason, A. K. Vaskov, M. S. Willsey, E. J. Welle, H. An, P. P. Vu, A.
J. Bullard, C. S. Nu, J. C. Kao, K. V. Shenoy, T. Jang, H.-S. Kim, D.
Blaauw, P. G. Patil, C. A. Chestek, A low-power band of
neuronal spiking activity dominated by local single units improves the
performance of brainmachine interfaces. Nature Biomedical
Engineering 2020, 1–11 (2020).
97.
P.
Němec, P. Osten, The evolution of brain
structure captured in stereotyped cell count and cell type
distributions. Current Opinion in Neurobiology.
60, 176–183 (2020).
98.
J.
Newman, R. Zeller-Townson, M. Fong, S. Arcot Desai, R. Gross, S. Potter,
Closed-Loop, Multichannel Experimentation
Using the Open-Source NeuroRighter Electrophysiology
Platform. Frontiers in Neural Circuits.
6 (2013).
99.
J.
P. Newman, M. F. Fong, D. C. Millard, C. J. Whitmire, G. B. Stanley, S.
M. Potter, Optogenetic feedback control of neural activity.
eLife (2015), doi:10.7554/eLife.07192.
100.
E.
R. Oby, M. D. Golub, J. A. Hennig, A. D. Degenhart, E. C. Tyler-Kabara,
B. M. Yu, S. M. Chase, A. P. Batista, New neural activity
patterns emerge with long-term learning. Proceedings of the
National Academy of Sciences. 116, 15210–15215
(2019).
101.
Y.
Ohta, M. C. Guinto, T. Tokuda, M. Kawahara, M. Haruta, H. Takehara, H.
Tashiro, K. Sasagawa, H. Onoe, R. Yamaguchi, Y. Koshimizu, K. Isa, T.
Isa, K. Kobayashi, Y. M. Akay, M. Akay, J. Ohta, Micro-LED
Array-Based Photo-Stimulation Devices for
Optogenetics in Rat and Macaque Monkey
Brains. IEEE Access. 9,
127937–127949 (2021).
102.
A.
M. Packer, B. Roska, M. Häuser, Targeting neurons and photons for
optogenetics. Nature Neuroscience. 16,
805–815 (2013).
103.
A.
M. Packer, L. E. Russell, H. W. P. Dalgleish, M. Häusser, Simultaneous all-optical
manipulation and recording of neural circuit activity with cellular
resolution in vivo. Nature Methods. 12,
140–146 (2015).
104.
C.
Pandarinath, D. J. O’Shea, J. Collins, R. Jozefowicz, S. D. Stavisky, J.
C. Kao, E. M. Trautmann, M. T. Kaufman, S. I. Ryu, L. R. Hochberg, J. M.
Henderson, K. V. Shenoy, L. F. Abbott, D. Sussillo, Inferring single-trial
neural population dynamics using sequential auto-encoders.
Nature Methods. 15, 805–815 (2018).
105.
H.
Parasuram, B. Nair, E. D’Angelo, M. Hines, G. Naldi, S. Diwakar, Computational modeling
of single neuron extracellular electric potentials and network local
field potentials using LFPsim. Frontiers in
Computational Neuroscience. 10, 65 (2016).
106.
107.
D.
Peixoto, J. R. Verhein, R. Kiani, J. C. Kao, P. Nuyujukian, C.
Chandrasekaran, J. Brown, S. Fong, S. I. Ryu, K. V. Shenoy, W. T.
Newsome, Decoding
and perturbing decision states in real time. Nature.
591, 604–609 (2021).
108.
Y.
Peng, F. X. Mittermaier, H. Planert, U. C. Schneider, H. Alle, J. R. P.
Geiger, High-throughput
microcircuit analysis of individual human brains through next-generation
multineuron patch-clamp. eLife. 8, e48178
(2019).
109.
K.
H. Pettersen, H. Lindén, A. M. Dale, G. T. Einevoll, Extracellular
spikes and CSD. Handbook of neural activity
measurement. 1, 92–135 (2012).
110.
S.
M. Potter, A. El Hady, E. E. Fetz, Closed-loop neuroscience
and neuroengineering. Frontiers in Neural Circuits.
0, 115 (2014).
111.
A.
A. Prinz, L. F. Abbott, E. Marder, The dynamic clamp
comes of age. Trends in Neurosciences. 27,
218–224 (2004).
112.
M.
Prsa, G. L. Galiñanes, D. Huber, Rapid
Integration of Artificial Sensory Feedback
during Operant Conditioning of Motor Cortex
Neurons. Neuron. 93, 929–939.e6
(2017).
113.
C.
Rackauckas, Q. Nie, DifferentialEquations.jl
A Performant and Feature-Rich Ecosystem for
Solving Differential Equations in Julia.
Journal of Open Research Software. 5, 15
(2017).
114.
R.
Rajalingham, A. Piccato, M. Jazayeri, Recurrent neural
networks with explicit representation of dynamic latent variables can
mimic behavioral patterns in a physical inference task. Nature
Communications. 13, 1–15 (2022).
115.
E.
Ronzitti, R. Conti, V. Zampini, D. Tanese, A. J. Foust, N. Klapoetke, E.
S. Boyden, E. Papagiakoumou, V. Emiliani, Submillisecond
Optogenetic Control of Neuronal Firing with
Two-Photon Holographic Photoactivation of
Chronos. Journal of Neuroscience.
37, 10679–10689 (2017).
116.
B.
L. Roth, DREADDs
for Neuroscientists. Neuron.
89, 683–694 (2016).
117.
M.
E. Rule, C. Vargas-Irwin, J. P. Donoghue, W. Truccolo, Phase reorganization leads
to transient β-LFP spatial
wave patterns in motor cortex during steady-state movement
preparation. Journal of Neurophysiology.
119, 2212–2228 (2018).
118.
A.
B. Saleem, A. D. Lien, M. Krumin, B. Haider, M. R. Rosón, A. Ayaz, K.
Reinhold, L. Busse, M. Carandini, K. D. Harris, M. Carandini, Subcortical
Source and Modulation of the Narrowband
Gamma Oscillation in Mouse Visual Cortex.
Neuron. 93, 315–322 (2017).
119.
O.
G. Sani, Y. Yang, M. B. Lee, H. E. Dawes, E. F. Chang, M. M. Shanechi,
Mood variations decoded from
multi-site intracranial human brain activity. Nature
Biotechnology. 36, 954–961 (2018).
120.
O.
G. Sani, B. Pesaran, M. M. Shanechi, M. Hsieh, Where is all the
nonlinearity: Flexible nonlinear modeling of behaviorally relevant
neural dynamics using recurrent neural networks. bioRxiv,
2021.09.03.458628 (2021).
121.
O.
G. Sani, H. Abbaspourazad, Y. T. Wong, B. Pesaran, M. M. Shanechi, Modeling behaviorally
relevant neural dynamics enabled by preferential subspace
identification. Nature Neuroscience. 24,
140–149 (2021).
122.
G.
Santhanam, B. M. Yu, V. Gilja, S. I. Ryu, A. Afshar, M. Sahani, K. V.
Shenoy, Factor-Analysis
Methods for Higher-Performance Neural
Prostheses. Journal of Neurophysiology.
102, 1315–1330 (2009).
123.
T.
K. Sato, I. Nauhaus, M. Carandini, Traveling
Waves in Visual Cortex. Neuron.
75, 218–229 (2012).
124.
L.
K. Scheffer, C. S. Xu, M. Januszewski, Z. Lu, S. Takemura, K. J.
Hayworth, G. B. Huang, K. Shinomiya, J. Maitlin-Shepard, S. Berg, J.
Clements, P. M. Hubbard, W. T. Katz, L. Umayam, T. Zhao, D. Ackerman, T.
Blakely, J. Bogovic, T. Dolafi, D. Kainmueller, T. Kawase, K. A. Khairy,
L. Leavitt, P. H. Li, L. Lindsey, N. Neubarth, D. J. Olbris, H. Otsuna,
E. T. Trautman, M. Ito, A. S. Bates, J. Goldammer, T. Wolff, R.
Svirskas, P. Schlegel, E. Neace, C. J. Knecht, C. X. Alvarado, D. A.
Bailey, S. Ballinger, J. A. Borycz, B. S. Canino, N. Cheatham, M. Cook,
M. Dreher, O. Duclos, B. Eubanks, K. Fairbanks, S. Finley, N. Forknall,
A. Francis, G. P. Hopkins, E. M. Joyce, S. Kim, N. A. Kirk, J. Kovalyak,
S. A. Lauchie, A. Lohff, C. Maldonado, E. A. Manley, S. McLin, C.
Mooney, M. Ndama, O. Ogundeyi, N. Okeoma, C. Ordish, N. Padilla, C. M.
Patrick, T. Paterson, E. E. Phillips, E. M. Phillips, N. Rampally, C.
Ribeiro, M. K. Robertson, J. T. Rymer, S. M. Ryan, M. Sammons, A. K.
Scott, A. L. Scott, A. Shinomiya, C. Smith, K. Smith, N. L. Smith, M. A.
Sobeski, A. Suleiman, J. Swift, S. Takemura, I. Talebi, D. Tarnogorska,
E. Tenshaw, T. Tokhi, J. J. Walsh, T. Yang, J. A. Horne, F. Li, R.
Parekh, P. K. Rivlin, V. Jayaraman, M. Costa, G. S. Jefferis, K. Ito, S.
Saalfeld, R. George, I. A. Meinertzhagen, G. M. Rubin, H. F. Hess, V.
Jain, S. M. Plaza, A
connectome and analysis of the adult Drosophila central
brain. eLife. 9, e57443 (2020).
125.
S.
Schneider, J. H. Lee, M. W. Mathis, Learnable latent embeddings for
joint behavioral and neural analysis (2022), doi:10.48550/arXiv.2204.00673.
126.
A.
A. Sharp, M. B. O’Neil, L. F. Abbott, E. Marder, The dynamic clamp:
Artificial conductances in biological neurons. Trends in
Neurosciences. 16, 389–394 (1993).
127.
K.
V. Shenoy, M. Sahani, M. M. Churchland, Cortical
Control of Arm Movements: A Dynamical
Systems Perspective. Annual Review of Neuroscience.
36, 337–359 (2013).
128.
K.
V. Shenoy, J. C. Kao, Measurement,
manipulation and modeling of brain-wide neural population dynamics.
Nature Communications. 12, 1–5 (2021).
129.
J.
H. Siegle, A. C. López, Y. A. Patel, K. Abramov, S. Ohayon, J. Voigts,
Open
Ephys: An open-source, plugin-based platform for
multichannel electrophysiology. Journal of Neural
Engineering. 14, 045003 (2017).
130.
J.
T. H. Smith, S. W. Linderman, D. Sussillo, "Reverse engineering
recurrent neural networks with Jacobian switching linear
dynamical systems" in Advances in Neural Information
Processing Systems (2021; https://arxiv.org/abs/2111.01256),
vol. 20, pp. 16700–16713.
131.
O.
Sporns, Graph
theory methods: Applications in brain networks. Dialogues in
Clinical Neuroscience. 20, 111–121 (2018).
132.
S.
Sridharan, M. A. Gajowa, M. B. Ogando, U. K. Jagadisan, L. Abdeladim, M.
Sadahiro, H. A. Bounds, W. D. Hendricks, T. S. Turney, I. Tayler, K.
Gopakumar, I. A. Oldenburg, S. G. Brohawn, H. Adesnik, High-performance
microbial opsins for spatially and temporally precise perturbations of
large neuronal networks. Neuron. 110,
1139–1155.e6 (2022).
133.
S.
S. Srinivasan, B. E. Maimon, M. Diaz, H. Song, H. M. Herr, Closed-loop functional
optogenetic stimulation. Nature Communications.
9, 1–10 (2018).
134.
N.
A. Steinmetz, C. Aydin, A. Lebedeva, M. Okun, M. Pachitariu, M. Bauza,
M. Beau, J. Bhagat, C. Böhm, M. Broux, S. Chen, J. Colonell, R. J.
Gardner, B. Karsh, F. Kloosterman, D. Kostadinov, C. Mora-Lopez, J.
O’Callaghan, J. Park, J. Putzeys, B. Sauerbrei, R. J. J. van Daal, A. Z.
Vollan, S. Wang, M. Welkenhuysen, Z. Ye, J. T. Dudman, B. Dutta, A. W.
Hantman, K. D. Harris, A. K. Lee, E. I. Moser, J. O’Keefe, A. Renart, K.
Svoboda, M. Häusser, S. Haesler, M. Carandini, T. D. Harris, Neuropixels
2.0: A miniaturized high-density probe for stable,
long-term brain recordings. Science. 372
(2021), doi:10.1126/science.abf4588.
135.
M.
Stimberg, R. Brette, D. F. M. Goodman, Brian 2, an intuitive and
efficient neural simulator. eLife. 8 (2019),
doi:10.7554/eLife.47314.
136.
J.
M. Stujenske, T. Spellman, J. A. Gordon, Modeling the
Spatiotemporal Dynamics of Light and
Heat Propagation for InVivo Optogenetics.
Cell Reports. 12, 525–534 (2015).
137.
D.
Sussillo, O. Barak, Opening the Black
Box: Low-Dimensional Dynamics in
High-Dimensional Recurrent Neural Networks. Neural
Computation. 25, 626–649 (2013).
138.
D.
Sussillo, Neural
circuits as computational dynamical systems. Current Opinion in
Neurobiology. 25, 156–163 (2014).
139.
K.
Svoboda, R. Yasuda, Principles of
Two-Photon Excitation Microscopy and Its
Applications to Neuroscience. Neuron.
50, 823–839 (2006).
140.
S.
Tafazoli, C. J. MacDowell, Z. Che, K. C. Letai, C. R. Steinhardt, T. J.
Buschman, Learning to
control the brain through adaptive closed-loop patterned
stimulation. Journal of Neural Engineering.
17, 056007 (2020).
141.
I.
Tal, S. Neymotin, S. Bickel, P. Lakatos, C. E. Schroeder, Oscillatory
Bursting as a Mechanism for Temporal
Coupling and Information Coding. Frontiers in
Computational Neuroscience. 14 (2020).
142.
B.
Telenczuk, M. Telenczuk, A. Destexhe, A kernel-based
method to calculate local field potentials from networks of spiking
neurons. Journal of Neuroscience Methods.
344, 108871 (2020).
143.
C.
Thornton, F. Hutchings, M. Kaiser, The virtual electrode recording tool
for extracellular potentials (VERTEX) Version
2.0: Modelling in vitro electrical stimulation of brain
tissue. Wellcome Open Research. 4 (2019),
doi:10.12688/wellcomeopenres.15058.1.
144.
R.
J. Tomsett, M. Ainsworth, A. Thiele, M. Sanayei, X. Chen, M. A.
Gieselmann, M. A. Whittington, M. O. Cunningham, M. Kaiser, Virtual Electrode
Recording Tool for EXtracellular potentials
(VERTEX): Comparing multi-electrode recordings from
simulated and biological mammalian cortical tissue. Brain
Structure and Function. 220, 2333–2353
(2015).
145.
A.
R. Vaidya, M. S. Pujara, M. Petrides, E. A. Murray, L. K. Fellows, Lesion
Studies in Contemporary Neuroscience.
Trends in Cognitive Sciences. 23, 653–671
(2019).
146.
J.
Vierock, S. Rodriguez-Rozada, A. Dieter, F. Pieper, R. Sims, F.
Tenedini, A. C. F. Bergs, I. Bendifallah, F. Zhou, N. Zeitzschel, J.
Ahlbeck, S. Augustin, K. Sauter, E. Papagiakoumou, A. Gottschalk, P.
Soba, V. Emiliani, A. K. Engel, P. Hegemann, J. S. Wiegert, BiPOLES
is an optogenetic tool developed for bidirectional dual-color control of
neurons. Nature Communications. 12, 1–20
(2021).
147.
T.
Vo-Dinh, Biomedical
Photonics: Handbook (CRC
Press, 2003).
148.
S.
Vyas, M. D. Golub, D. Sussillo, K. V. Shenoy, Computation
through Neural Population Dynamics. Annual Review
of Neuroscience. 43, 249–275 (2020).
149.
D.
A. Wagenaar, R. Madhavan, J. Pine, S. M. Potter, Controlling
bursting in cortical cultures with closed-loop multi-electrode
stimulation. Journal of Neuroscience. 25,
680–688 (2005).
150.
Y.
Wang, S. Boyd, Fast
Model Predictive Control Using Online Optimization.
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY.
18, 267 (2010).
151.
G.
Wang, D. R. Wyskiel, W. Yang, Y. Wang, L. C. Milbern, T. Lalanne, X.
Jiang, Y. Shen, Q. Q. Sun, J. J. Zhu, An optogenetics- and
imaging-assisted simultaneous multiple patch-clamp recording system for
decoding complex neural circuits. Nature Protocols.
10, 397–412 (2015).
152.
L.
Wang, K. Huang, C. Zhong, L. Wang, Y. Lu, Fabrication and
modification of implantable optrode arrays for in vivo optogenetic
applications. Biophysics Reports. 4, 82–93
(2018).
153.
X.-J. Wang, G. Buzsáki, Gamma oscillation by
synaptic inhibition in a hippocampal interneuronal network model.
Journal of neuroscience. 16, 6402–6413
(1996).
154.
M.
Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, V.
Baekelandt, Z. Debyser, G. Gielen, R. Puers, D. Braeken, An integrated
multi-electrode-optrode array for in vitro optogenetics.
Scientific Reports. 6, 20353 (2016).
155.
J.
S. Wiegert, M. Mahn, M. Prigge, Y. Printz, O. Yizhar, Silencing
Neurons: Tools, Applications, and
Experimental Constraints. Neuron.
95, 504–529 (2017).
156.
F.
R. Willett, D. T. Avansino, L. R. Hochberg, J. M. Henderson, K. V.
Shenoy, High-performance
brain-to-text communication via handwriting. Nature.
593, 249–254 (2021).
157.
K.
A. Wilmes, C. Clopath, Inhibitory
microcircuits for top-down plasticity of sensory representations.
Nature Communications. 10, 5055 (2019).
158.
A.
Witt, A. Palmigiano, A. Neef, A. El Hady, F. Wolf, D. Battaglia, Controlling the
oscillation phase through precisely timed closed-loop optogenetic
stimulation: A computational study. Frontiers in Neural
Circuits. 7, 1–17 (2013).
159.
J.
Wu, Y. Liang, S. Chen, C. L. Hsu, M. Chavarha, S. W. Evans, D. Shi, M.
Z. Lin, K. K. Tsia, N. Ji, Kilohertz two-photon
fluorescence microscopy imaging of neural activity in vivo.
Nature Methods. 17, 287–290 (2020).
160.
G.
R. Yang, M. R. Joglekar, H. F. Song, W. T. Newsome, X.-J. Wang, Task representations in
neural networks trained to perform many cognitive tasks. Nature
Neuroscience. 22, 297–306 (2019).
161.
Y.
Yang, S. Qiao, O. G. Sani, J. I. Sedillo, B. Ferrentino, B. Pesaran, M.
M. Shanechi, Modelling and
prediction of the dynamic responses of large-scale brain networks during
direct electrical stimulation. Nature Biomedical
Engineering. 5, 324–345 (2021).
162.
O.
Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, Optogenetics in
Neural Systems. Neuron. 71,
9–34 (2011).
163.
H.
Zeng, What is a
cell type and how to define it? Cell. 185,
2739–2755 (2022).
164.
F.
Zenke, T. P. Vogels, The
Remarkable Robustness of Surrogate Gradient
Learning for Instilling Complex Function in
Spiking Neural Networks. Neural Computation.
33, 899–925 (2021).
165.
Z.
Zhang, L. E. Russell, A. M. Packer, O. M. Gauld, M. Häusser, Closed-loop all-optical
interrogation of neural circuits in vivo. Nature Methods.
15, 1037–1040 (2018).
166.
L.
Zhang, J. Lee, C. Rozell, A. C. Singer, Sub-second dynamics of
theta-gamma coupling in hippocampal CA1. eLife.
8 (2019), doi:10.7554/eLife.44320.