References

1.
H. Adesnik, L. Abdeladim, Probing neural codes with two-photon holographic optogenetics. Nature Neuroscience. 24, 1356–1366 (2021).
2.
T. Akam, D. M. Kullmann, Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nature Reviews Neuroscience. 15, 111–122 (2014).
3.
A. Alegria, A. Joshi, J. O’Brien, S. B. Kodandaramaiah, Single neuron recording: Progress towards high-throughput analysis. Bioelectronics in Medicine. 3, 33–36 (2020).
4.
J. Antolik, Q. Sabatier, C. Galle, Y. Frégnac, R. Benosman, Assessment of optogenetically-driven strategies for prosthetic restoration of cortical vision in large-scale neural simulation of V1. Scientific Reports. 11, 1–18 (2021).
5.
G. K. Anumanchipalli, J. Chartier, E. F. Chang, Speech synthesis from neural decoding of spoken sentences. Nature. 568, 493–498 (2019).
6.
J. Aru, J. Aru, V. Priesemann, M. Wibral, L. Lana, G. Pipa, W. Singer, R. Vicente, Untangling cross-frequency coupling in neuroscience. Current Opinion in Neurobiology. 31, 51–61 (2015).
7.
A. Aussel, L. Buhry, L. Tyvaert, R. Ranta, A detailed anatomical and mathematical model of the hippocampal formation for the generation of sharp-wave ripples and theta-nested gamma oscillations. Journal of Computational Neuroscience. 45, 207–221 (2018).
8.
A. Aussel, R. Ranta, O. Aron, S. Colnat-Coulbois, L. Maillard, L. Buhry, Cell to network computational model of the epileptic human hippocampus suggests specific roles of network and channel dysfunctions in the ictal and interictal oscillations. Journal of Computational Neuroscience (2022), doi:10.1007/s10827-022-00829-5.
9.
L. Avitan, C. Stringer, Not so spontaneous: Multi-dimensional representations of behaviors and context in sensory areas. Neuron (2022), doi:10.1016/j.neuron.2022.06.019.
10.
D. L. Barack, J. W. Krakauer, Two views on the cognitive brain. Nature Reviews Neuroscience. 22, 359–371 (2021).
11.
G. Bellec, F. Scherr, A. Subramoney, E. Hajek, D. Salaj, R. Legenstein, W. Maass, A solution to the learning dilemma for recurrent networks of spiking neurons. Nature Communications. 11 (2020), doi:10.1101/738385.
12.
A. Bemporad, M. Morari, V. Dua, E. N. Pistikopoulos, The explicit linear quadratic regulator for constrained systems. Automatica. 38, 3–20 (2002).
13.
G. J. Berman, D. M. Choi, W. Bialek, J. W. Shaevitz, Mapping the stereotyped behaviour of freely moving fruit flies. Journal of The Royal Society Interface. 11, 20140672 (2014).
14.
A. Bogdanchikov, M. Zhaparov, R. Suliyev, "Python to learn programming" in Journal of Physics: Conference Series (IOP Publishing, 2013), vol. 423, p. 012027.
15.
M. F. Bolus, A. A. Willats, C. J. Whitmire, C. J. Rozell, G. B. Stanley, Design strategies for dynamic closed-loop optogenetic neurocontrol in vivo. Journal of Neural Engineering. 15, 026011 (2018).
16.
M. F. Bolus, A. A. Willats, C. J. Rozell, G. B. Stanley, State-space optimal feedback control of optogenetically driven neural activity. Journal of neural engineering. 18, 036006 (2021).
17.
N. Brunel, X.-J. Wang, What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. Journal of neurophysiology. 90, 415–430 (2003).
18.
E. A. Buffalo, P. Fries, R. Landman, T. J. Buschman, R. Desimone, Laminar differences in gamma and alpha coherence in the ventral stream. Proceedings of the National Academy of Sciences of the United States of America. 108, 11262–11267 (2011).
19.
T. J. Buschman, E. L. Denovellis, C. Diogo, D. Bullock, E. K. Miller, Synchronous Oscillatory Neural Ensembles for Rules in the Prefrontal Cortex. Neuron. 76, 838–846 (2012).
20.
G. Buzsáki, A. Draguhn, Neuronal oscillations in cortical networks. Science. 304, 1926–1929 (2004).
21.
G. Buzsáki, C. A. Anastassiou, C. Koch, The origin of extracellular fields and currents EEG, ECoG, LFP and spikes. Nature Reviews Neuroscience 2012 13:6. 13, 407–420 (2012).
22.
G. Buzsáki, X.-J. Wang, Mechanisms of Gamma Oscillations. Annual Review of Neuroscience. 35, 203–225 (2012).
23.
24.
J. A. Cardin, M. Carlén, K. Meletis, U. Knoblich, F. Zhang, K. Deisseroth, L. H. Tsai, C. I. Moore, Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nature Protocols. 5, 247–254 (2010).
25.
S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. Loong Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, T. J. McHugh, Near-infrared deep brain stimulation via upconversion nanoparticlemediated optogenetics. Science. 359, 679–684 (2018).
26.
I.-W. Chen, E. Papagiakoumou, V. Emiliani, Towards circuit optogenetics. Current Opinion in Neurobiology. 50, 179–189 (2018).
27.
M. M. Churchland, J. P. Cunningham, M. T. Kaufman, S. I. Ryu, K. V. Shenoy, Cortical Preparatory Activity: Representation of Movement or First Cog in a Dynamical Machine? Neuron. 68, 387–400 (2010).
28.
M. M. Churchland, J. P. Cunningham, M. T. Kaufman, J. D. Foster, P. Nuyujukian, S. I. Ryu, K. V. Shenoy, K. V. Shenoy, Neural population dynamics during reaching. Nature. 487, 51–56 (2012).
29.
S. R. Cole, B. Voytek, Brain Oscillations and the Importance of Waveform Shape. Trends in Cognitive Sciences. 21, 137–149 (2017).
30.
S. Cole, B. Voytek, Cycle-by-cycle analysis of neural oscillations. Journal of Neurophysiology. 122, 849–861 (2019).
31.
B. R. Cowley, A. C. Snyder, K. Acar, R. C. Williamson, B. M. Yu, M. A. Smith, Slow Drift of Neural Activity as a Signature of Impulsivity in Macaque Visual and Prefrontal Cortex. Neuron. 108, 551–567.e8 (2020).
32.
J. P. Cunningham, B. M. Yu, Dimensionality reduction for large-scale neural recordings. Nature neuroscience. 17, 1500–9 (2014).
33.
J. T. Davie, M. H. P. Kole, J. J. Letzkus, E. A. Rancz, N. Spruston, G. J. Stuart, M. Häusser, Dendritic patch-clamp recording. Nature Protocols. 1, 1235–1247 (2006).
34.
Z. W. Davis, L. Muller, J. Martinez-Trujillo, T. Sejnowski, J. H. Reynolds, Spontaneous travelling cortical waves gate perception in behaving primates. Nature. 587, 432–436 (2020).
35.
A. P. Davison, M. L. Hines, E. Muller, Trends in programming languages for neuroscience simulations. Frontiers in Neuroscience. 3, 374–380 (2009).
36.
L. Driscoll, K. Shenoy, D. Sussillo, Flexible multitask computation in recurrent networks utilizes shared dynamical motifs (2022), p. 2022.08.15.503870.
37.
S. Dufour, Y. D. Koninck, Optrodes for combined optogenetics and electrophysiology in live animals. Neurophotonics. 2, 031205 (2015).
38.
L. Duncker, M. Sahani, Dynamics on the manifold: Identifying computational dynamical activity from neural population recordings. Current Opinion in Neurobiology. 70, 163–170 (2021).
39.
S. Dutta, E. Ackermann, C. Kemere, Analysis of an open source, closed-loop, realtime system for hippocampal sharp-wave ripple disruption. Journal of Neural Engineering. 16, 016009 (2019).
40.
V. Emiliani, A. E. Cohen, K. Deisseroth, M. Häusser, All-optical interrogation of neural circuits. Journal of Neuroscience. 35, 13917–13926 (2015).
41.
D. Engel, Subcellular patch-clamp recordings from the somatodendritic domain of nigral dopamine neurons. Journal of Visualized Experiments. 2016, e54601 (2016).
42.
D. Eriksson, A. Schneider, A. Thirumalai, M. Alyahyay, B. de la Crompe, K. Sharma, P. Ruther, I. Diester, Multichannel optogenetics combined with laminar recordings for ultra-controlled neuronal interrogation. Nature Communications. 13, 985 (2022).
43.
B. D. Evans, S. Jarvis, S. R. Schultz, K. Nikolic, PyRhO: A Multiscale Optogenetics Simulation Platform. Frontiers in Neuroinformatics. 10, 8 (2016).
44.
M. S. Fabus, A. J. Quinn, C. E. Warnaby, M. W. Woolrich, Automatic decomposition of electrophysiological data into distinct nonsinusoidal oscillatory modes. Journal of Neurophysiology. 126, 1670–1684 (2021).
45.
G. Faini, C. Molinier, C. Telliez, C. Tourain, B. C. Forget, E. Ronzitti, V. Emiliani, Ultrafast Light Targeting for High-Throughput Precise Control of Neuronal Networks. bioRxiv, 2021.06.14.448315 (2021).
46.
L. Fenno, O. Yizhar, K. Deisseroth, The development and application of optogenetics. Annual Review of Neuroscience. 34, 389–412 (2011).
47.
L. M. J. Fernandez, A. Lüthi, Sleep Spindles: Mechanisms and Functions. Physiological Reviews. 100, 805–868 (2020).
48.
N. C. Flytzanis, C. N. Bedbrook, H. Chiu, M. K. M. Engqvist, C. Xiao, K. Y. Chan, P. W. Sternberg, F. H. Arnold, V. Gradinaru, Archaerhodopsin variants with enhanced voltage-sensitive fluorescence in mammalian and Caenorhabditis elegans neurons. Nature Communications. 5, 4894 (2014).
49.
T. J. Foutz, R. L. Arlow, C. C. Mcintyre, Theoretical principles underlying optical stimulation of a channelrhodopsin-2 positive pyramidal neuron. J Neurophysiol. 107, 3235–3245 (2012).
50.
J. A. Gallego, M. G. Perich, L. E. Miller, S. A. Solla, Neural Manifolds for the Control of Movement. Neuron. 94, 978–984 (2017).
51.
W. Gerstner, W. M. Kistler, R. Naud, L. Paninski, Neuronal dynamics: From single neurons to networks and models of cognition (Cambridge University Press, 2014).
52.
W. Göbel, F. Helmchen, In Vivo Calcium Imaging of Neural Network Function. Physiology. 22, 358–365 (2007).
53.
L. Grosenick, J. H. Marshel, K. Deisseroth, Review Closed-Loop and Activity-Guided Optogenetic Control. Neuron. 86, 106–139 (2015).
54.
P. Gutruf, J. A. Rogers, Implantable, wireless device platforms for neuroscience research. Current Opinion in Neurobiology. 50, 42–49 (2018).
55.
E. Hagen, S. Næss, T. V. Ness, G. T. Einevoll, Multimodal modeling of neural network activity: Computing LFP, ECoG, EEG, and MEG signals with LFPy 2.0. Frontiers in Neuroinformatics. 12, 92 (2018).
56.
D. R. Hochbaum, Y. Zhao, S. L. Farhi, N. Klapoetke, C. A. Werley, V. Kapoor, P. Zou, J. M. Kralj, D. MacLaurin, N. Smedemark-Margulies, J. L. Saulnier, G. L. Boulting, C. Straub, Y. K. Cho, M. Melkonian, G. K. S. Wong, D. J. Harrison, V. N. Murthy, B. L. Sabatini, E. S. Boyden, R. E. Campbell, A. E. Cohen, All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nature Methods. 11, 825–833 (2014).
57.
A. L. Hodgkin, A. F. Huxley, B. Katz, Measurement of current-voltage relations in the membrane of the giant axon of Loligo. The Journal of Physiology. 116, 424–448 (1952).
58.
G. R. Holt, C. Koch, Electrical interactions via the extracellular potential near cell bodies. Journal of Computational Neuroscience. 6, 169–184 (1999).
59.
C. Hurwitz, A. Srivastava, K. Xu, J. Jude, M. G. Perich, L. E. Miller, M. H. Hennig, "Targeted Neural Dynamical Modeling" in Advances in Neural Information Processing Systems (2021; https://arxiv.org/abs/2110.14853), vol. 35, pp. 29379–29392.
60.
61.
M. Jazayeri, S. Ostojic, Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity. Current Opinion in Neurobiology. 70, 113–120 (2021).
62.
S. Jeon, Y. Lee, D. Ryu, Y. K. Cho, Y. Lee, S. B. Jun, C.-H. Ji, Implantable Optrode Array for Optogenetic Modulation and Electrical Neural Recording. Micromachines. 12, 725 (2021).
63.
A. Joglekar, A. Prjibelski, A. Mahfouz, P. Collier, S. Lin, A. K. Schlusche, J. Marrocco, S. R. Williams, B. Haase, A. Hayes, J. G. Chew, N. I. Weisenfeld, M. Y. Wong, A. N. Stein, S. A. Hardwick, T. Hunt, Q. Wang, C. Dieterich, Z. Bent, O. Fedrigo, S. A. Sloan, D. Risso, E. D. Jarvis, P. Flicek, W. Luo, G. S. Pitt, A. Frankish, A. B. Smit, M. E. Ross, H. U. Tilgner, A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nature Communications. 12, 463 (2021).
64.
K. Johnsen, Kjohnsen/tklfp: V0.2.0 (2022), doi:10.5281/zenodo.6787979.
65.
A. L. Juavinett, G. Bekheet, A. K. Churchland, Chronically implanted Neuropixels probes enable high-yield recordings in freely moving mice. eLife. 8, e47188 (2019).
66.
J. F. Kalaska, R. Caminiti, A. P. Georgopoulos, Cortical mechanisms related to the direction of two-dimensional arm movements: Relations in parietal area 5 and comparison with motor cortex. Experimental Brain Research. 51, 247–260 (1983).
67.
R. E. Kalman, A new approach to linear filtering and prediction problems. Journal of Fluids Engineering, Transactions of the ASME. 82, 35–45 (1960).
68.
G. Karvat, A. Schneider, M. Alyahyay, F. Steenbergen, M. Tangermann, I. Diester, Real-time detection of neural oscillation bursts allows behaviourally relevant neurofeedback. Communications Biology. 3, 1–10 (2020).
69.
C. Kathe, F. Michoud, P. Schönle, A. Rowald, N. Brun, J. Ravier, I. Furfaro, V. Paggi, K. Kim, S. Soloukey, L. Asboth, T. H. Hutson, I. Jelescu, A. Philippides, N. Alwahab, J. Gandar, D. Huber, C. I. De Zeeuw, Q. Barraud, Q. Huang, S. P. Lacour, G. Courtine, Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nature Biotechnology. 40, 198–208 (2022).
70.
M. T. Kaufman, M. M. Churchland, S. I. Ryu, K. V. Shenoy, Cortical activity in the null space: Permitting preparation without movement. Nature Neuroscience. 17, 440–448 (2014).
71.
A. Kazemipour, O. Novak, D. Flickinger, J. S. Marvin, A. S. Abdelfattah, J. King, P. M. Borden, J. J. Kim, S. H. Al-Abdullatif, P. E. Deal, E. W. Miller, E. R. Schreiter, S. Druckmann, K. Svoboda, L. L. Looger, K. Podgorski, Kilohertz frame-rate two-photon tomography. Nature Methods. 16, 778–786 (2019).
72.
T. D. Kim, T. Z. Luo, J. W. Pillow, C. D. Brody, "Inferring Latent Dynamics Underlying Neural Population Activity via Neural Differential Equations" in Proceedings of the 38th International Conference on Machine Learning (PMLR, 2021), pp. 5551–5561.
73.
K. E. Kishi, Y. S. Kim, M. Fukuda, M. Inoue, T. Kusakizako, P. Y. Wang, C. Ramakrishnan, E. F. X. Byrne, E. Thadhani, J. M. Paggi, T. E. Matsui, K. Yamashita, T. Nagata, M. Konno, S. Quirin, M. Lo, T. Benster, T. Uemura, K. Liu, M. Shibata, N. Nomura, S. Iwata, O. Nureki, R. O. Dror, K. Inoue, K. Deisseroth, H. E. Kato, Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell. 185, 672–689.e23 (2022).
74.
T. Knöpfel, C. Song, Optical voltage imaging in neurons: Moving from technology development to practical tool. Nature Reviews Neuroscience. 20, 719–727 (2019).
75.
M. Kokaia, M. Andersson, M. Ledri, An optogenetic approach in epilepsy. Neuropharmacology. 69, 89–95 (2013).
76.
E. Krook-Magnuson, C. Armstrong, M. Oijala, I. Soltesz, On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nature Communications. 4, 1–8 (2013).
77.
A. Kumar, I. Vlachos, A. Aertsen, C. Boucsein, Challenges of understanding brain function by selective modulation of neuronal subpopulations. Trends in Neurosciences. 36, 579–586 (2013).
78.
K. Y. Kwon, H.-M. Lee, M. Ghovanloo, A. Weber, W. Li, Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Frontiers in Systems Neuroscience. 9 (2015).
79.
C. Lee, A. Lavoie, J. Liu, S. X. Chen, B. Liu, Light Up the Brain: The Application of Optogenetics in Cell-Type Specific Dissection of Mouse Brain Circuits. Frontiers in Neural Circuits. 14 (2020).
80.
J. Y. Lin, P. M. Knutsen, A. Muller, D. Kleinfeld, R. Y. Tsien, ReaChR: A red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nature Neuroscience. 16, 1499–1508 (2013).
81.
M. Lundqvist, J. Rose, P. Herman, S. L. L. Brincat, T. J. J. Buschman, E. K. K. Miller, Gamma and Beta Bursts Underlie Working Memory. Neuron. 90, 152–164 (2016).
82.
M. Lundqvist, J. Rose, S. L. Brincat, M. R. Warden, T. J. Buschman, P. Herman, E. K. Miller, Reduced variability of bursting activity during working memory. Scientific Reports. 12, 15050 (2022).
83.
L. van der Maaten, G. Hinton, Visualizing Data using t-SNE. Journal of Machine Learning Research. 9, 2579–2605 (2008).
84.
J. H. Macke, L. Buesing, J. P. Cunningham, B. M. Yu, K. V. Shenoy, M. Sahani, "Empirical models of spiking in neural populations" in Advances in Neural Information Processing Systems (Curran Associates, Inc., 2011), vol. 24.
85.
D. Mao, N. Li, Z. Xiong, Y. Sun, G. Xu, Single-Cell Optogenetic Control of Calcium Signaling with a High-Density Micro-LED Array. iScience. 21, 403–412 (2019).
86.
D. Mao, Z. Xiong, M. Donnelly, G. Xu, Brushing-Assisted Two-Color Quantum-Dot Micro-LED Array Towards Bi-Directional Optogenetics. IEEE Electron Device Letters. 42, 1504–1507 (2021).
87.
R. I. Martinez-Garcia, B. Voelcker, J. B. Zaltsman, S. L. Patrick, T. R. Stevens, B. W. Connors, S. J. Cruikshank, Two dynamically distinct circuits drive inhibition in the sensory thalamus. Nature. 583, 813–818 (2020).
88.
A. Mathis, P. Mamidanna, K. M. Cury, T. Abe, V. N. Murthy, M. W. Mathis, M. Bethge, DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience. 21, 1281–1289 (2018).
89.
A. Mazzoni, H. Lindén, H. Cuntz, A. Lansner, S. Panzeri, G. T. Einevoll, Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models. PLOS Computational Biology. 11, e1004584 (2015).
90.
N. McAlinden, Y. Cheng, R. Scharf, E. Xie, E. Gu, C. F. Reiche, R. Sharma, P. Tathireddy, P. Tathireddy, L. Rieth, S. Blair, K. Mathieson, Multisite microLED optrode array for neural interfacing. Neurophotonics. 6, 035010 (2019).
91.
S. Moldakarimov, M. Bazhenov, D. E. Feldman, T. J. Sejnowski, Structured networks support sparse traveling waves in rodent somatosensory cortex. Proceedings of the National Academy of Sciences of the United States of America. 115, 5277–5282 (2018).
92.
A. S. Morcos, C. D. Harvey, History-dependent variability in population dynamics during evidence accumulation in cortex. Nature Neuroscience. 19, 1672–1681 (2016).
93.
E. A. Mukamel, J. Ngai, Perspectives on defining cell types in the brain. Current Opinion in Neurobiology. 56, 61–68 (2019).
94.
E. Muller, J. A. Bednar, M. Diesmann, M. O. Gewaltig, M. Hines, A. P. Davison, Python in neuroscience. Frontiers in Neuroinformatics. 9, 11 (2015).
95.
L. Muller, F. Chavane, J. Reynolds, T. J. Sejnowski, Cortical travelling waves: Mechanisms and computational principles. Nature Reviews Neuroscience. 19, 255–268 (2018).
96.
S. R. Nason, A. K. Vaskov, M. S. Willsey, E. J. Welle, H. An, P. P. Vu, A. J. Bullard, C. S. Nu, J. C. Kao, K. V. Shenoy, T. Jang, H.-S. Kim, D. Blaauw, P. G. Patil, C. A. Chestek, A low-power band of neuronal spiking activity dominated by local single units improves the performance of brainmachine interfaces. Nature Biomedical Engineering 2020, 1–11 (2020).
97.
P. Němec, P. Osten, The evolution of brain structure captured in stereotyped cell count and cell type distributions. Current Opinion in Neurobiology. 60, 176–183 (2020).
98.
J. Newman, R. Zeller-Townson, M. Fong, S. Arcot Desai, R. Gross, S. Potter, Closed-Loop, Multichannel Experimentation Using the Open-Source NeuroRighter Electrophysiology Platform. Frontiers in Neural Circuits. 6 (2013).
99.
J. P. Newman, M. F. Fong, D. C. Millard, C. J. Whitmire, G. B. Stanley, S. M. Potter, Optogenetic feedback control of neural activity. eLife (2015), doi:10.7554/eLife.07192.
100.
E. R. Oby, M. D. Golub, J. A. Hennig, A. D. Degenhart, E. C. Tyler-Kabara, B. M. Yu, S. M. Chase, A. P. Batista, New neural activity patterns emerge with long-term learning. Proceedings of the National Academy of Sciences. 116, 15210–15215 (2019).
101.
Y. Ohta, M. C. Guinto, T. Tokuda, M. Kawahara, M. Haruta, H. Takehara, H. Tashiro, K. Sasagawa, H. Onoe, R. Yamaguchi, Y. Koshimizu, K. Isa, T. Isa, K. Kobayashi, Y. M. Akay, M. Akay, J. Ohta, Micro-LED Array-Based Photo-Stimulation Devices for Optogenetics in Rat and Macaque Monkey Brains. IEEE Access. 9, 127937–127949 (2021).
102.
A. M. Packer, B. Roska, M. Häuser, Targeting neurons and photons for optogenetics. Nature Neuroscience. 16, 805–815 (2013).
103.
A. M. Packer, L. E. Russell, H. W. P. Dalgleish, M. Häusser, Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nature Methods. 12, 140–146 (2015).
104.
C. Pandarinath, D. J. O’Shea, J. Collins, R. Jozefowicz, S. D. Stavisky, J. C. Kao, E. M. Trautmann, M. T. Kaufman, S. I. Ryu, L. R. Hochberg, J. M. Henderson, K. V. Shenoy, L. F. Abbott, D. Sussillo, Inferring single-trial neural population dynamics using sequential auto-encoders. Nature Methods. 15, 805–815 (2018).
105.
H. Parasuram, B. Nair, E. D’Angelo, M. Hines, G. Naldi, S. Diwakar, Computational modeling of single neuron extracellular electric potentials and network local field potentials using LFPsim. Frontiers in Computational Neuroscience. 10, 65 (2016).
106.
J. Pearl, Causality (Cambridge University Press, New York, 2009).
107.
D. Peixoto, J. R. Verhein, R. Kiani, J. C. Kao, P. Nuyujukian, C. Chandrasekaran, J. Brown, S. Fong, S. I. Ryu, K. V. Shenoy, W. T. Newsome, Decoding and perturbing decision states in real time. Nature. 591, 604–609 (2021).
108.
Y. Peng, F. X. Mittermaier, H. Planert, U. C. Schneider, H. Alle, J. R. P. Geiger, High-throughput microcircuit analysis of individual human brains through next-generation multineuron patch-clamp. eLife. 8, e48178 (2019).
109.
K. H. Pettersen, H. Lindén, A. M. Dale, G. T. Einevoll, Extracellular spikes and CSD. Handbook of neural activity measurement. 1, 92–135 (2012).
110.
S. M. Potter, A. El Hady, E. E. Fetz, Closed-loop neuroscience and neuroengineering. Frontiers in Neural Circuits. 0, 115 (2014).
111.
A. A. Prinz, L. F. Abbott, E. Marder, The dynamic clamp comes of age. Trends in Neurosciences. 27, 218–224 (2004).
112.
M. Prsa, G. L. Galiñanes, D. Huber, Rapid Integration of Artificial Sensory Feedback during Operant Conditioning of Motor Cortex Neurons. Neuron. 93, 929–939.e6 (2017).
113.
C. Rackauckas, Q. Nie, DifferentialEquations.jl A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia. Journal of Open Research Software. 5, 15 (2017).
114.
115.
E. Ronzitti, R. Conti, V. Zampini, D. Tanese, A. J. Foust, N. Klapoetke, E. S. Boyden, E. Papagiakoumou, V. Emiliani, Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos. Journal of Neuroscience. 37, 10679–10689 (2017).
116.
B. L. Roth, DREADDs for Neuroscientists. Neuron. 89, 683–694 (2016).
117.
M. E. Rule, C. Vargas-Irwin, J. P. Donoghue, W. Truccolo, Phase reorganization leads to transient β-LFP spatial wave patterns in motor cortex during steady-state movement preparation. Journal of Neurophysiology. 119, 2212–2228 (2018).
118.
A. B. Saleem, A. D. Lien, M. Krumin, B. Haider, M. R. Rosón, A. Ayaz, K. Reinhold, L. Busse, M. Carandini, K. D. Harris, M. Carandini, Subcortical Source and Modulation of the Narrowband Gamma Oscillation in Mouse Visual Cortex. Neuron. 93, 315–322 (2017).
119.
O. G. Sani, Y. Yang, M. B. Lee, H. E. Dawes, E. F. Chang, M. M. Shanechi, Mood variations decoded from multi-site intracranial human brain activity. Nature Biotechnology. 36, 954–961 (2018).
120.
121.
O. G. Sani, H. Abbaspourazad, Y. T. Wong, B. Pesaran, M. M. Shanechi, Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification. Nature Neuroscience. 24, 140–149 (2021).
122.
G. Santhanam, B. M. Yu, V. Gilja, S. I. Ryu, A. Afshar, M. Sahani, K. V. Shenoy, Factor-Analysis Methods for Higher-Performance Neural Prostheses. Journal of Neurophysiology. 102, 1315–1330 (2009).
123.
T. K. Sato, I. Nauhaus, M. Carandini, Traveling Waves in Visual Cortex. Neuron. 75, 218–229 (2012).
124.
L. K. Scheffer, C. S. Xu, M. Januszewski, Z. Lu, S. Takemura, K. J. Hayworth, G. B. Huang, K. Shinomiya, J. Maitlin-Shepard, S. Berg, J. Clements, P. M. Hubbard, W. T. Katz, L. Umayam, T. Zhao, D. Ackerman, T. Blakely, J. Bogovic, T. Dolafi, D. Kainmueller, T. Kawase, K. A. Khairy, L. Leavitt, P. H. Li, L. Lindsey, N. Neubarth, D. J. Olbris, H. Otsuna, E. T. Trautman, M. Ito, A. S. Bates, J. Goldammer, T. Wolff, R. Svirskas, P. Schlegel, E. Neace, C. J. Knecht, C. X. Alvarado, D. A. Bailey, S. Ballinger, J. A. Borycz, B. S. Canino, N. Cheatham, M. Cook, M. Dreher, O. Duclos, B. Eubanks, K. Fairbanks, S. Finley, N. Forknall, A. Francis, G. P. Hopkins, E. M. Joyce, S. Kim, N. A. Kirk, J. Kovalyak, S. A. Lauchie, A. Lohff, C. Maldonado, E. A. Manley, S. McLin, C. Mooney, M. Ndama, O. Ogundeyi, N. Okeoma, C. Ordish, N. Padilla, C. M. Patrick, T. Paterson, E. E. Phillips, E. M. Phillips, N. Rampally, C. Ribeiro, M. K. Robertson, J. T. Rymer, S. M. Ryan, M. Sammons, A. K. Scott, A. L. Scott, A. Shinomiya, C. Smith, K. Smith, N. L. Smith, M. A. Sobeski, A. Suleiman, J. Swift, S. Takemura, I. Talebi, D. Tarnogorska, E. Tenshaw, T. Tokhi, J. J. Walsh, T. Yang, J. A. Horne, F. Li, R. Parekh, P. K. Rivlin, V. Jayaraman, M. Costa, G. S. Jefferis, K. Ito, S. Saalfeld, R. George, I. A. Meinertzhagen, G. M. Rubin, H. F. Hess, V. Jain, S. M. Plaza, A connectome and analysis of the adult Drosophila central brain. eLife. 9, e57443 (2020).
125.
S. Schneider, J. H. Lee, M. W. Mathis, Learnable latent embeddings for joint behavioral and neural analysis (2022), doi:10.48550/arXiv.2204.00673.
126.
A. A. Sharp, M. B. O’Neil, L. F. Abbott, E. Marder, The dynamic clamp: Artificial conductances in biological neurons. Trends in Neurosciences. 16, 389–394 (1993).
127.
K. V. Shenoy, M. Sahani, M. M. Churchland, Cortical Control of Arm Movements: A Dynamical Systems Perspective. Annual Review of Neuroscience. 36, 337–359 (2013).
128.
K. V. Shenoy, J. C. Kao, Measurement, manipulation and modeling of brain-wide neural population dynamics. Nature Communications. 12, 1–5 (2021).
129.
J. H. Siegle, A. C. López, Y. A. Patel, K. Abramov, S. Ohayon, J. Voigts, Open Ephys: An open-source, plugin-based platform for multichannel electrophysiology. Journal of Neural Engineering. 14, 045003 (2017).
130.
J. T. H. Smith, S. W. Linderman, D. Sussillo, "Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems" in Advances in Neural Information Processing Systems (2021; https://arxiv.org/abs/2111.01256), vol. 20, pp. 16700–16713.
131.
O. Sporns, Graph theory methods: Applications in brain networks. Dialogues in Clinical Neuroscience. 20, 111–121 (2018).
132.
S. Sridharan, M. A. Gajowa, M. B. Ogando, U. K. Jagadisan, L. Abdeladim, M. Sadahiro, H. A. Bounds, W. D. Hendricks, T. S. Turney, I. Tayler, K. Gopakumar, I. A. Oldenburg, S. G. Brohawn, H. Adesnik, High-performance microbial opsins for spatially and temporally precise perturbations of large neuronal networks. Neuron. 110, 1139–1155.e6 (2022).
133.
S. S. Srinivasan, B. E. Maimon, M. Diaz, H. Song, H. M. Herr, Closed-loop functional optogenetic stimulation. Nature Communications. 9, 1–10 (2018).
134.
N. A. Steinmetz, C. Aydin, A. Lebedeva, M. Okun, M. Pachitariu, M. Bauza, M. Beau, J. Bhagat, C. Böhm, M. Broux, S. Chen, J. Colonell, R. J. Gardner, B. Karsh, F. Kloosterman, D. Kostadinov, C. Mora-Lopez, J. O’Callaghan, J. Park, J. Putzeys, B. Sauerbrei, R. J. J. van Daal, A. Z. Vollan, S. Wang, M. Welkenhuysen, Z. Ye, J. T. Dudman, B. Dutta, A. W. Hantman, K. D. Harris, A. K. Lee, E. I. Moser, J. O’Keefe, A. Renart, K. Svoboda, M. Häusser, S. Haesler, M. Carandini, T. D. Harris, Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science. 372 (2021), doi:10.1126/science.abf4588.
135.
M. Stimberg, R. Brette, D. F. M. Goodman, Brian 2, an intuitive and efficient neural simulator. eLife. 8 (2019), doi:10.7554/eLife.47314.
136.
J. M. Stujenske, T. Spellman, J. A. Gordon, Modeling the Spatiotemporal Dynamics of Light and Heat Propagation for InVivo Optogenetics. Cell Reports. 12, 525–534 (2015).
137.
D. Sussillo, O. Barak, Opening the Black Box: Low-Dimensional Dynamics in High-Dimensional Recurrent Neural Networks. Neural Computation. 25, 626–649 (2013).
138.
D. Sussillo, Neural circuits as computational dynamical systems. Current Opinion in Neurobiology. 25, 156–163 (2014).
139.
140.
S. Tafazoli, C. J. MacDowell, Z. Che, K. C. Letai, C. R. Steinhardt, T. J. Buschman, Learning to control the brain through adaptive closed-loop patterned stimulation. Journal of Neural Engineering. 17, 056007 (2020).
141.
I. Tal, S. Neymotin, S. Bickel, P. Lakatos, C. E. Schroeder, Oscillatory Bursting as a Mechanism for Temporal Coupling and Information Coding. Frontiers in Computational Neuroscience. 14 (2020).
142.
B. Telenczuk, M. Telenczuk, A. Destexhe, A kernel-based method to calculate local field potentials from networks of spiking neurons. Journal of Neuroscience Methods. 344, 108871 (2020).
143.
C. Thornton, F. Hutchings, M. Kaiser, The virtual electrode recording tool for extracellular potentials (VERTEX) Version 2.0: Modelling in vitro electrical stimulation of brain tissue. Wellcome Open Research. 4 (2019), doi:10.12688/wellcomeopenres.15058.1.
144.
R. J. Tomsett, M. Ainsworth, A. Thiele, M. Sanayei, X. Chen, M. A. Gieselmann, M. A. Whittington, M. O. Cunningham, M. Kaiser, Virtual Electrode Recording Tool for EXtracellular potentials (VERTEX): Comparing multi-electrode recordings from simulated and biological mammalian cortical tissue. Brain Structure and Function. 220, 2333–2353 (2015).
145.
A. R. Vaidya, M. S. Pujara, M. Petrides, E. A. Murray, L. K. Fellows, Lesion Studies in Contemporary Neuroscience. Trends in Cognitive Sciences. 23, 653–671 (2019).
146.
J. Vierock, S. Rodriguez-Rozada, A. Dieter, F. Pieper, R. Sims, F. Tenedini, A. C. F. Bergs, I. Bendifallah, F. Zhou, N. Zeitzschel, J. Ahlbeck, S. Augustin, K. Sauter, E. Papagiakoumou, A. Gottschalk, P. Soba, V. Emiliani, A. K. Engel, P. Hegemann, J. S. Wiegert, BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons. Nature Communications. 12, 1–20 (2021).
147.
T. Vo-Dinh, Biomedical Photonics: Handbook (CRC Press, 2003).
148.
S. Vyas, M. D. Golub, D. Sussillo, K. V. Shenoy, Computation through Neural Population Dynamics. Annual Review of Neuroscience. 43, 249–275 (2020).
149.
D. A. Wagenaar, R. Madhavan, J. Pine, S. M. Potter, Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation. Journal of Neuroscience. 25, 680–688 (2005).
150.
Y. Wang, S. Boyd, Fast Model Predictive Control Using Online Optimization. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY. 18, 267 (2010).
151.
G. Wang, D. R. Wyskiel, W. Yang, Y. Wang, L. C. Milbern, T. Lalanne, X. Jiang, Y. Shen, Q. Q. Sun, J. J. Zhu, An optogenetics- and imaging-assisted simultaneous multiple patch-clamp recording system for decoding complex neural circuits. Nature Protocols. 10, 397–412 (2015).
152.
L. Wang, K. Huang, C. Zhong, L. Wang, Y. Lu, Fabrication and modification of implantable optrode arrays for in vivo optogenetic applications. Biophysics Reports. 4, 82–93 (2018).
153.
X.-J. Wang, G. Buzsáki, Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of neuroscience. 16, 6402–6413 (1996).
154.
M. Welkenhuysen, L. Hoffman, Z. Luo, A. De Proft, C. Van den Haute, V. Baekelandt, Z. Debyser, G. Gielen, R. Puers, D. Braeken, An integrated multi-electrode-optrode array for in vitro optogenetics. Scientific Reports. 6, 20353 (2016).
155.
J. S. Wiegert, M. Mahn, M. Prigge, Y. Printz, O. Yizhar, Silencing Neurons: Tools, Applications, and Experimental Constraints. Neuron. 95, 504–529 (2017).
156.
F. R. Willett, D. T. Avansino, L. R. Hochberg, J. M. Henderson, K. V. Shenoy, High-performance brain-to-text communication via handwriting. Nature. 593, 249–254 (2021).
157.
K. A. Wilmes, C. Clopath, Inhibitory microcircuits for top-down plasticity of sensory representations. Nature Communications. 10, 5055 (2019).
158.
A. Witt, A. Palmigiano, A. Neef, A. El Hady, F. Wolf, D. Battaglia, Controlling the oscillation phase through precisely timed closed-loop optogenetic stimulation: A computational study. Frontiers in Neural Circuits. 7, 1–17 (2013).
159.
J. Wu, Y. Liang, S. Chen, C. L. Hsu, M. Chavarha, S. W. Evans, D. Shi, M. Z. Lin, K. K. Tsia, N. Ji, Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nature Methods. 17, 287–290 (2020).
160.
G. R. Yang, M. R. Joglekar, H. F. Song, W. T. Newsome, X.-J. Wang, Task representations in neural networks trained to perform many cognitive tasks. Nature Neuroscience. 22, 297–306 (2019).
161.
Y. Yang, S. Qiao, O. G. Sani, J. I. Sedillo, B. Ferrentino, B. Pesaran, M. M. Shanechi, Modelling and prediction of the dynamic responses of large-scale brain networks during direct electrical stimulation. Nature Biomedical Engineering. 5, 324–345 (2021).
162.
O. Yizhar, L. E. Fenno, T. J. Davidson, M. Mogri, K. Deisseroth, Optogenetics in Neural Systems. Neuron. 71, 9–34 (2011).
163.
H. Zeng, What is a cell type and how to define it? Cell. 185, 2739–2755 (2022).
164.
165.
Z. Zhang, L. E. Russell, A. M. Packer, O. M. Gauld, M. Häusser, Closed-loop all-optical interrogation of neural circuits in vivo. Nature Methods. 15, 1037–1040 (2018).
166.
L. Zhang, J. Lee, C. Rozell, A. C. Singer, Sub-second dynamics of theta-gamma coupling in hippocampal CA1. eLife. 8 (2019), doi:10.7554/eLife.44320.